Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons.
نویسندگان
چکیده
The different dynamical features underlying soliton interactions in coupled nonlinear Schrödinger equations, which model multimode wave propagation under varied physical situations in nonlinear optics, are studied. In this paper, by explicitly constructing multisoliton solutions (up to four-soliton solutions) for two-coupled and arbitrary N-coupled nonlinear Schrödinger equations using the Hirota bilinearization method, we bring out clearly the various features underlying the fascinating shape changing (intensity redistribution) collisions of solitons, including changes in amplitudes, phases and relative separation distances, and the very many possibilities of energy redistributions among the modes of solitons. However, in this multisoliton collision process the pairwise collision nature is shown to be preserved in spite of the changes in the amplitudes and phases of the solitons. Detailed asymptotic analysis also shows that when solitons undergo multiple collisions, there exists the exciting possibility of shape restoration of at least one soliton during interactions of more than two solitons represented by three- and higher-order soliton solutions. From an application point of view, we have shown from the asymptotic expressions how the amplitude (intensity) redistribution can be written as a generalized linear fractional transformation for the N-component case. Also we indicate how the multisolitons can be reinterpreted as various logic gates for suitable choices of the soliton parameters, leading to possible multistate logic. In addition, we point out that the various recently studied partially coherent solitons are just special cases of the bright soliton solutions exhibiting shape-changing collisions, thereby explaining their variable profile and shape variation in collision process.
منابع مشابه
Shape-changing Collisions of Coupled Bright Solitons in Birefringent Optical Fibers
We critically review the recent progress in understanding soliton propagation in birefringent optical fibers. By constructing the most general bright two-soliton solution of the integrable coupled nonlinear Schrödinger equation (Manakov model) we point out that solitons in birefringent fibers can in general change their shape after interaction due to a change in the intensity distribution among...
متن کاملCoherent and Incoherent Contributions to Multisoliton Complexes
We analyze multisoliton complexes and their dynamics in Kerr-like nonlinear media. The field in each of M incoherently interacting components is calculated using an integrable set of coupled nonlinear Schrödinger equations. We obtain a general N-soliton solution describing propagation of multisoliton complexes and their collisions. The evolution of such higher-order soliton beams is determined ...
متن کاملPartially coherent solitons of variable shape in a slow Kerr-like medium: exact solutions.
We carry out a theoretical investigation of the properties of partially coherent solitons for media which have a slow Kerr-like nonlinearity. We find exact solutions of the Nth-order Manakov equations in a general form. These describe partially coherent solitons (PCSs) and their collisions. In fact, the exact solutions allow us to analyze important properties of PCSs such as stationary profiles...
متن کاملCollisions of two solitons in an arbitrary number of coupled nonlinear Schrödinger equations.
We show that pairwise soliton collisions in N>2 intensity-coupled nonlinear Schrödinger equations can be reduced to pairwise soliton collisions in two coupled equations. The reduction applies to a wide class of systems, including the N-component Manakov system. This greatly simplifies the analysis of such systems and has important implications for the application of soliton collisions to all-op...
متن کاملQuantum lattice gas representation of some classical solitons
A quantum lattice gas representation is determined for both the non-linear Schrödinger (NLS) and Korteweg–de Vries (KdV) equations. There is excellent agreement with the solutions from these representations to the exact soliton–soliton collisions of the integrable NLS and KdV equations. These algorithms could, in principle, be simulated on a hybrid quantum-classical computer. 2003 Elsevier Sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2003